Lesson Rolling Ball Game (31 points, *bonus* 12)
This lesson is an introductory to working in the unity game engine for artist. It assumes no previous experience in working with Unity, programming, or 3d computer modeling/animating.

1. Prefabs Section (4 points)
First we will be learning how to import an art asset from maya. We will use these (student created or pre-made?) assets to make a simple play “Game Board”, “Player” object, and “PickUp” objects.

General Procedure for making Prefabs:
1. Make a new Project in unity. Name this Project “Rolling Ball Game.”

2. Inside your “Rolling Ball Game” project folder > “Assets” folder, right click on its name in the project area, and select create>folder from the popup menu that appears. Name the new folder “FBX”.

3. Move all the FBX files you have for this project into the “FBX” folder.

4. Inside your “Assets” folder make “Prefabs” folder.

5. Drag all the FBXs form the “FBX” folder in the project area of unity into the hierarchy area.

6. Drag these objects from the hierarchy area into the project area’s “Prefabs” folder.

7. Create tags at the top of the inspector area.

7.1. Once you select a game object, there is a pull down menu there called “Tag”. In order to make a new tag, click on the menu pull down and select the last option “Add Tag...”

7.2. Type the tag name that you wish to create in the text field area of the “Element” of the the “Tags” list that can be opened (if not already) by clicking the arrow in front of the list name.

7.3. Note you can add more elements to this list by increasing the number in the “Size” text area.

Grading for Prefabs Section (7 points):
1. 1 point for FOLDER ORIGINIZATION[(.5)“FBX” and “Prefabs” folders within the “Assets” folder of your unity project, (.5)All FBXs that are being used for this project are in the “FXB” folder]

2. 1 point for PLAYER [(.5) point for importing an asset for the player, (.5) point for making a prefab in unity named and tagged “Player”] To do so:

3. 1 point for PICKUP [(.5) point for importing an asset for the pickup, (.5) point for making a prefab in unity named pickup and tagged “PickUp”]

4. 1 point for GROUND [(.5) point for importing an asset for the ground, (.5) point for making a prefab in unity named “Ground”]

5. 1 point for WALL [(.5) point for importing an asset for the wall, (.5) point for making a prefab in unity named “Wall”]

6. 2 point for PREFAB ORIGINIZATION[(.5)All Prefabs that are being used for this project are in the “Prefabs” folder, (1.5)All Prefabs are tagged with the proper name]

2. Parented Prefabs Section (5 points)
Next we will assemble the “Gound” and “Wall” prefabs into the “Game Board.”
General Procedure for making Parented Prefabs:

1. Drag the need prefabs back into the project area into the hierarchy area if not already present.

2. Click in the hierarchy area and press CTRL + SHIFT + N. Name this new game object, “Game Board.”

3. Drag all “Ground” and “Wall” prefabs onto the “Game Board.” so that name moves in to the right under the game object “Game Board.”

4. Finally drag the “Game Board” onto your project area, > into your “Prefabs” folder

5. Note the “apply” button that is near the top of the inspector area when you select the “Game Board” prefab in the hierarchy area. Pushing this button will update any changes that you make to you prefab in the scene area to all the other prefabs that are connected to the prefab you have selected.

6. BE VERY CAREFUL! Don’t “apply” any changes that you do not want ALL prefabs of that name to have. You will know if something is a prefab if its name is colored blue.

Grading for Prefab : GAMEBOARD Section (5points):

1. .5 point for parenting one “Ground”, and for “Wall” prefabs into an empty game object called “Game Board.”

2. 1 point for GB : GROUND [Drag a “Ground” prefab onto the hierarchy. Check in the scene window that it is positioned at the world center (X-0, Y-0, Z-0), scaled (X-25, Y-2, Z-25)]

3. 1 point for GB : NORTH WALL [(.5) position a “Wall” prefab flush with the direction = North end of the “Ground.” (.5) perfectly flush - touching with no space separating gaps, so that these two object appear to be one]

4. 1 point for GB : EAST WALL [same rules as above, change direction = East]

5. 1 point for GB : WEST WALL [same rules as above, change direction = West]

6. 1 point for GB : SOUTH WALL [same rules as above, change direction = South]

7. .5 point for “apply”ing these changes to your “Game Board” prefab after moving everything into the proper location.
3. Basic Data Types Section (points 6)
After we have all our assets in place and named properly(emphasis on naming convention for use in code/organization), we will learn some basic data types:{ [string, int, float]}.

Basic Data Types Resource:

1. a variable is just like what you learned about in algebra. It is a container for an amount. The difference in programming is that it can contain more than just numbers. Variables can contain words (strings), integers (whole numbers), floats (numbers with decimal value), arrays (lists of any data type that can be made), objects (contains data type variables as well as methods that manipulate data types), etc.

1.1. Note that you can name a variable anything you want. Just remember what data type it is in order to know how to work with it!
2. public is a privacy label that makes a variable and functions/methods avaliable to every class or C# script in Unity to use. Note that using it in another class means you have to get a reference to the class which contains the variable within the class that you want to use it in (This is an advance topic that you do not have to worry about yet).
3. private is a privacy label that makes variables and functions/methods avaliable to only the class or C# script in Unity that they are instantiated within.

4. Three data types that we will be using for this section.
4.1. string (words)

1. public string myString = “This is how you instantiate and assign a string in Unity C#”;
4.2. int (whole numbers)

1. public int myInt = 1;
4.3. float (numbers with decimal value) are the

1. public float myFloat = 2.2f;
5. Debug.Log(); this is how you check to see what a variables value is in unity. Note that you will be using this function in this section’s quiz!

General Procedure for implementing a script in Unity:

1. Make a new folder named “Scripts” in you “Assets” folder of your unity project.

2. Open that folder, right click inside, new>c#script. Name this something meaningful for what you intend to do with it.

3. Make an empty game object.

4. Select this new object, drag the new script onto the bottom part of the inspector area. You should see the new script appear in the inspector if you did this right.

5. Double click on the script icon in the inspector in order to open that script up in Mono Development, Unity’s default script editing program.

6. Once open you can type the code that you want to run in Unity.

7. You have to type variables and methods inside the scripts outer most {}
7.1. for example

7.1.1. class how: monobehavior

7.1.2. {

7.1.2.1. public int myVar = 1;

7.1.2.2. void start ()

7.1.2.3. {

7.1.2.3.1. myMethod();

7.1.2.3.2. consloe.log(myVar);

7.1.2.4. }

7.1.2.5. void update()

7.1.2.6. {

7.1.2.6.1. myMethod();

7.1.2.6.2. consloe.log(myVar);

7.1.2.7. }

7.1.2.8. public void myMethod()

7.1.2.9. {

7.1.2.9.1. debug.log(“This reads out to Unity’s debug.log()

7.1.2.9.2. when myMethod is
called in the start() or update() method. You can

7.1.2.9.3. also run debug.log() by itself within the update or start.”);

7.1.2.10. }

7.1.3. }
8. Make sure to always save if you make changes to the script.

9. Finally, click the play button that is located in the lop middle of the Unity console in order to see if you script works.

Grading for Basic Data Types Section (points 6)

{

public string dataType;

public void rules (string dt)

{

Debug.Log(“(1 point) Successfully created a “ + dt + “ variable in Unity

C# script.”);

Debug.Log(“(1 point) Successfully logged ” + dt + “ to Unities console.”)

}

public void 2PointsForString ()

{

dataType = “string”;

rules (dataType);

}

public void 2PointsForInt ()

{

dataType = “int”;

rules (dataType);

}

public void 2PointsForFloat ()

{

dataType = “float”;

rules (dataType);

}

void start ()

{

2PointsForString ();

2PointsForInt ();

2PointsForFloat ();

}

}

4. Basic Player Movement Section (points 8, *bonus* 4)
Once we are fairly familiar with scripting in Unity, we can start to make things happen! Basic player movement is a good place to start since everything in our game is going to depend on how the player interacts within the game environment via the “Player” avatar. We should have already created a player and a board for home to play on. If not return to the first section. If so lets begin.

Procedure for implementing a Basic Movement script in Unity:
1. If you do not already have your “Player” prefab and “Game Board” prefab in the hierarchy section and visually present in the scene section, drag those prefabs for the correct folder in the project area onto the hierarchy area.

2. Make a new C# script called “BasicPlayerMovement.” Drag that script onto the “Player” prefab.

3. To test and make sure that the script is attached correctly, right a Debug.Log(“testing player movement script”); in the “Update” method of this new class/script that you have created. Run the Unity scene player, and make sure that the console displays the message that you typed in the script.

4. The script that follows will get your “Player” moving around. Just copy it after the update method that is already in the class.

5. public float speed;

5.1. void FixedUpdate()

5.2. {

1. float moveHorizontal = Input.GetAxis ("Horizontal");

2. float moveVertical = Input.GetAxis ("Vertical");

3. Vector3 movement = new Vector3(moveHorizontal, 0.0f,

4. moveVertical);

5. rigidbody.AddForce (movement * speed * Time.deltaTime);

5.3. }

Grading for Basic Movement Section (8 points, *bonus* 4):
1. 1 point for BASIC PLAYER MOVEMENT SCRIPT [There is a script called “BasicPlayerMovement” visible in the inspector when you select the “Player” prefab]

2. 1 point RIGID BODY [add the component “Rigidbody” to your “Player” prefab. You can do this by clicking on the “Add Component” button at the end off the inspector area. If you can not see it, you might need to scroll down. Once the popup window appears, type in Rigidbody in order to find the component. Click on the “Rigidbody” component to attach it to the “Player” prefab.]

3. 1 point BUG TEST [There is a console read out that says “testing player movement script” when you run your Unity project]

4. 3 points for PLAYER MOVEMENT FIXED UPDATE [(1)You have included the script that I have provided in your “BasicPlayerMovement” script, (1)The variable should be located in the outer most {} before the “Start” method, (1)the method “FixedUpdate” should be located in the outer most {} after the “Update” method]

5. 2 points [The “Player” moves around the “Game Board” when you use the direction arrows]

6. *bonus* 2 points [You have figured out how to make the “Player” jump]

7. *bonus* 2 points [You have figured out how to make the “Player” fly]

5. PickUp System Section (points 4, *bonus* 4)
Now that we have a “Player” moving around, we need to give them something to do. The “Pickup” that you created from the first section will come into play now.

Procedure for implementing a Basic PickUp system in Unity:
1. Select the “PickUp” prefab, so that it is visible in the inspector.

2. Add a “Rigidbody” to the “Pickup.”

3. Add the following script to the “BasicPlayerMovement” script.

4. void OnTriggerEnter(Collider other)

5. {

6.
if(other.gameObject.tag == "PickUp")

7.
{

8.

other.gameObject.SetActive (false);

9.
}

10. }

11. Notice that we refer to the “PickUp” tag in the above script. If you have not tagged you “PickUp” by the same name. Your script will not work.

12. For good measure, include a Debug.Log(“Entered!”), and play to test.

13. Next make sure that your “PickUp” and “Player” prefab has a “Box Collider” or “Sphere collider” component on it.

13.1. Click on the “Is Trigger” option box on this component so that a check appears.

Grading for a Basic PickUp System Section (4 points, *bonus* 4):
1. 1 point for RIGID BODY[There is a “Rigidbody” on the “PickUp” prefab]

2. 1 point SPREAD PICKUPS[Lay at least five “PickUp” prefabs out on the “Game Board” in different locations]

3. 1 point for TRIGGER CHECK[(.5)Add box or sphere colliders to the “Player” and “PickUp” prefabs if not already included, (.5) Check the “Is Trigger” option on both)]

4. 1 point for ON TRIGGER ENTER[(.5)You have included the above script after the last added method in the “BasicPlayerMovement” script, (.5)There is a debug statement inside that method that logs to the console during play when you activate the on trigger. To activate, simple move the “Player,” so that it touches the a “PickUp”]

5. *bonus* 2 points [Make the “PickUp” spin in place]

6. *bonus* 2 points [Make the “PickUp” change color over time]

6. Scoring System Section (points 4, *bonus* 4)
The final touches for now. There is a lot more we could do with this lesson. We want some way to track the player’s progress, and let them know when they have reach the goal. In order to do this, we will use a new type of game object called GUIText.

Procedure for implementing a Basic Scoring System in Unity:
1. First we need to add some more script to our “BasicPlayerMovement” script (We might want to move this out of this class when we make it a more complex scoring system.)

2. public float speed;
3. public GUIText countText;

4. public GUIText winText;

5. private int count;
6. void Start ()

7. {

8.
count = 0;

9.
SetCountText ();

10.
winText.text = " ";
11. }

12. void FixedUpdate()

13. {

14.
float moveHorizontal = Input.GetAxis ("Horizontal");

15.
float moveVertical = Input.GetAxis ("Vertical");

16.
Vector3 movement = new Vector3(moveHorizontal, 0.0f, moveVertical);

17.
rigidbody.AddForce (movement * speed * Time.deltaTime);

18. }

19. void OnTriggerEnter(Collider other)

20. {

21.
if(other.gameObject.tag == "PickUp")

22.
{

23.

other.gameObject.SetActive (false);

24.

count = count + 1;

25.

SetCountText ();
26.
}

27. }
28. void SetCountText ()

29. {

30.
countText.text = "Count: " + count.ToString ();

31.
if(count>=8)

32.
{

33.

winText.text = "You Win!";

34.
}

35. }

36. Note that the Bold script is the only scrip you have to add. I included the old script in order to give you a clear vision of where the new script should be added.

37. After this is done, create two new GUIText game objects.

1. This can be made by using the top menu GameObject>Create Other>GUI Text

2. Name the first one “Count_Text” and the second “Win_Text”

3. Select the “Player”

4. In the inspector, find the text variable slots (You will know them by the small circles to the left of the open box areas

1. In the hierarchy select each corresponding text name and drag them so that they change the status of the box from “None” to the name you dragged in.

38. Move the “Count_Text” to the upper left of the screen.

39. Move the “Win_Text” to the upper center of the screen.

40. Note that you have to change the integer 8 in the script to whatever is the total count of your “PickUp” prefabs on the “Game Board.”

Grading for a Basic Scoring System Section (4 points, *bonus* 4):
1. 1 point FINAL ADD[(.5) Added all the above script as described above, (.5)Included a Debug statement in the newly added method that reads out to the console ever time a player gets a “PickUp”]

2. 3 point GUI TEXT[(.5) For creating “Count_Text”, (.5) Tracks the player’s score, (.5) For creating “Win_Text”, (.5) Reads out “You win!” when all the “PickUp” prefabs are deactivated, (1) The above text is placed in the locations as described as above.]

3. *bonus* 3 points [Make a GUI Texture box to surround the “Count_Text” and the “Win_Text” (The “Win_Text” container should not appear until the player wins)]

4. *bonus* 1 points [Figure out how you can dynamically changing the above mentioned 8 in the inspector]
-Primary Resource: http://unity3d.com/learn/tutorials/projects/roll-a-ball

